博弈论 一切博弈论源的起之作 每个人都读得懂,学得会,用得着!

    博弈论 一切博弈论源的起之作 每个人都读得懂,学得会,用得着!

     

    编辑推荐

    ⊙ 学点儿博弈论,在竞争中保护自己
    如果你不想在竞争中受到伤害,那就用博弈论武装自己!

    ⊙ 学点儿博弈论,识破事态格局
    别人还在当局者迷,你早已看破真相!

    ⊙ 学点儿博弈论,掌握先发优势
    是竞争,也是合作。博弈论让你化被动为主动,掌控人生的节奏!

    内容简介

    本书是“博弈论之父”冯·诺依曼的代表作,囊括了迄今为止除演化博弈之外的所有博弈论的理论和方法,代表了博弈论发展的高阶水平。

    《博弈论》一书既包含了博弈数学理论的细致说明,又包含了该理论多方面的应用与实践。书中用丰富详实的案例,介绍了零和博弈、三人博弈、混合策略、囚徒困境等经典的博弈理论,每个博弈案例背后,都有一个可以运用的策略帮你解决人生难题。

    怎样找到合适的合伙人?怎样合理分配利益达到各方均衡?怎样在变幻莫测的局势中,摸清对手的意图?《博弈论》将带领读者走进博弈的赛局中,开始一场特殊的“博弈”之旅。

    作者简介

    约翰·冯·诺依曼(John von Neumann),美籍匈牙利数学家、计算机科学家、物理学家,20世纪重要的科学全才。

    先后执教于柏林大学和汉堡大学,1930年前往美国,后加入美国国籍。历任普林斯顿大学教授、普林斯顿高等研究院教授,入选美国原子能委员会会员,随后当选美国国家科学院院士。

    1928年,冯·诺依曼证明了博弈论的基本原理,从而宣告了博弈论的诞生。16年后,他又与摩根斯特恩合著《博弈论和经济行为》,将博弈论的应用扩展到经济学领域。

    前言

    博弈论的思想在古代便产生了,只是它在初期仅研究象棋、赌博中的一些胜负问题,并未形成专业的理论系统。当时的人们对于博弈的认识只停留在经验的认知和积累上,并未形成专业的理论基础,正式成为一门学科则是在20世纪初期。

    20世纪20年代末期,约翰·冯·诺依曼正式证明了博弈的基础原理,在此基础上宣告博弈论诞生,因此,冯·诺依曼被称为“博弈论之父”。再到20世纪40年代中期,一本跨越时代的巨著《博弈论与经济行为》问世,而作者正是冯·诺依曼和摩根斯坦。这两位卓越的数学家经过不断研究,最终将最初的二人博弈理论推广到了n人博弈理论,还将博弈论成功应用到经济领域,他们奠定了博弈论的基础和理论体系。
    “假设现在有人能够让博弈行为接近野蛮,或者让人类之间的友善行为和凶残行为之间的差距无限大,那么谁就更容易在博弈中取胜。”这是《博弈圣经》中提到的一段话。

    提起博弈论,便需要说起“孤独的天才”——约翰·纳什,他更是博弈论的天才。约翰·纳什在20世纪中期正式发表了一篇论文——《n人博弈的均衡点》,对博弈论起到了良好的推动作用。除此之外,哈桑尼与赛尔顿对博弈论的研究和贡献,也为博弈论的发展起到了催化作用。再到《博弈圣经》问世,它与原有的博弈论有着极大的区别,最大的差异在于《博弈圣经》中论述了博弈的文化理论,突出表现了人类博弈占据的优势。

    事实上,《博弈圣经》最大的优点是,它能够将原有的博弈理论正式应用到现实中,还能帮助普通大众通过自身的学习和研究成为博弈的真正高手。它还能将博弈论应用到政治、经济、文化等多个领域,对于个人的生活和发展也能起到促进和推动作用。

    简单来说,博弈的基本构成要素分为决策人、对抗者、生物亲序、局中人、策略、得失、次序。所谓决策人,指的是在博弈的赛局中率先做出选择的一方,决策人往往会根据自己的经验、自身在对局中的感受、自身的状态等,率先做出一种具有方向性的选择。

    在二人博弈对局中的对抗者,往往是选择滞后的那个人,需要做出与决策人的行为相反的选择,而且这个对抗者不仅选择落后,连行为与动作也是落后的,而且他的选择几乎是默认的、被动的,但是这将成为他最后的优势。简单说,他所做的选择极有可能是基于决策者选择中的劣势而做出的,由此一来,便具有了空间优势,这样看来对抗者便成了二人博弈中占优的一方。

    所谓生物亲序,从字面理解,就是生物会主动寻找有序的一种亲近行为。由于自然界的所有生物,当它们处在陌生、恶劣、未知环境中时,它们会发挥出主动寻找规律和有序环境的本能。同理,在博弈对局中,所有的参与者都会自发地产生寻找或者等待有序的亲近行为。

    我们知道一场竞赛会由参与者组成,而在博弈中,这些有决策权力的参与者,则被称为博弈赛局中的一个局中人;若在博弈中有两个局中人,那么便称为“两人博弈”;若在博弈中有多个局中人,则称为“多人博弈”。

    当我们参加较为正规的比赛时,在遵守规则的前提下,还会为自己制订一定的计划或者策略,帮助自己取胜,博弈亦是如此。在一场博弈赛局中,任意一个局中人都会制订自己在实际情况中所要施行的计划或者策略,简单来说,局中人的方案与计划并不只是针对某一个阶段,而是针对整个对局过程,即任何一个局中人的能够贯穿整个赛局的可行计划被称为一个局中人的策略。假设在一个博弈赛局中,局中人的策略是有限的,便称其为“有限博弈”,相反则称为“无限博弈”。

    在博弈赛局中,结果无非胜负两种,这种结果便是博弈中的得失。任何一个局中人在博弈中的最终得失,都与局中人的决策密切相关,甚至还与全局中的人所做出的一组决策密不可分。因此,每场博弈中的局中人的最终得失,都由全部的局中人做出的一组策略的函数决定,这组函数便是通常意义上的支付函数。

    比赛次序有先后,博弈策略亦是如此。博弈中的决策方在一个赛局中需要做出多次决策,此时便会出现决策的次序问题。在此过程中,只有决策的次序是不同的,但是其他要素是相同的,而最后出现的是不同的博弈结果。

    根据不同的标准产生了不同的博弈种类。我们可以将其大致分为两类,即通常意义上的合作博弈和非合作博弈。二者的最大差别在于参与博弈的人并没有达成一个相对具有约束力的协议。假设有协议可以参照,便是“合作博弈”;反之,则是“非合作博弈”。

    若以时间顺序为基准,博弈论可以分为两类:静态博弈和动态博弈。前者是指在博弈中,所有的参与者共同选择或者非同时做出选择,但是所有的后参与者对此并不知情,即后参与者不知道最初的参与者做出了怎样的决策和实际行动。后者是指在博弈中,所有的参与者采取的具体行动有先后之分,而且后来加入的参与者能够非常清晰地看到前面的参与者的具体行动。

    简言之,“囚徒困境”属于静态博弈,而棋牌类的博弈,或者那些行动、决策有先后的博弈则是“动态博弈”。事实上,博弈论根据不同的基准还有不同的分类,在此列举较为基础的几种。本书《博弈论》将带领读者走进博弈的赛局中,开始一场特殊的“博弈”之旅。

     

    译者序

    策略博弈论,我们通常将它称为博弈论,有些时候也会用“竞赛论”或者“对策论”来表示。但是,只有博弈论更符合原意,因为它能够更好地表达出此理论所要探究的基本概念和相关问题,同时,它是在最近十几年间逐渐发展起来的,还是运筹学的主要组成部分,本书是博理博弈论的经典著作。

    约翰·冯·诺依曼的这本思想史上的经典之作已经问世20年之久。本书《博弈论》不仅是成千上万读者的审美享受,还支撑着约翰·冯·诺依曼之后的研究者。与此同时,《博弈论》还直接推动了个人概率、统计决策、运筹学等诸多问题的研究进程。实际上,这本经典著作在各个领域都产生了一定的影响。

    为了让读者能够更加直观地看到博弈中的逻辑推理,冯·诺依曼先构造出一个概念,其包含了所有参与者的策略选择。通俗意义上说,一个参与者的一个策略选择就是一套简单的行动法则,同时是提供给这个参与者所有可能情况下的行动指导。假设任意一名参与者需要遵循给定的各种策略,那么博弈的整个过程可以说是已知的,显而易见所有参与博弈的人在博弈结束时,能够获得的收益其实是确定的。

    按照作者约翰·冯·诺依曼的观点,博弈论的方法是最适合研究经济方面的问题的数学方法。尽管博弈论的提出没有能够帮助作者完成解决经济问题的任务,但这一数学理论的提出与建立仍然是具有里程碑意义的。因为博弈论研究的是斗争,因此,在无数的斗争场景中,都有可能通过使用博弈论来解决相关的技术问题。例如人对自然财富的索取,人对自然灾害的抵抗,人对于未知领域的探索,以及军事上的斗争,等等。博弈论可以使人们在有限的条件和既定的要求下,从繁多的数量关系里寻找出最适宜、最高效的解决方案。

    约翰·冯·诺依曼创作《博弈论》的初衷是推动经济学理论的革命,但是它在很长一段时间内没有完成这个伟大的目标。不过,在它的影响下,人们发起了对整个时代经济学理论的质疑。从这一方面来看,《博弈论》确实是天才之作,因此它必将被世人永远铭记。

    经济学在未来是什么样子的?这在《博弈论》中已经予以回答。它必将是充满数学符号的。对不少人来说,《博弈论》更像一部希腊文著作,只有当我们理解它超过理解一种文化时,我们才能真正读懂它。或者,如果说《博弈论》是贝多芬的一部乐曲,那么还需要懂乐谱的人才能理解它。对于音盲来说,再好的音乐也无异于噪音。《博弈论》中最好的工具是数学,如果有人对数学一无所知,那么他很难进入现代科学的大门,或迈入现代哲学的世界,这无疑是令人遗憾的。数学不同于街头俗论,它关系着许多方面的思维能力。一般来说,拥有数学潜力的孩子往往具有更好的语言和逻辑能力。

    能否理解博弈论可以作为衡量21世纪文化人的标准。约翰·冯·诺依曼在《博弈论》中对多人博弈和个体最大化问题进行了区分,并指出了两者的主要差异。例如,研究一个典型的最大化问题:如何用周长1英里的篱笆围出最大的面积?对于这个问题,我们只需要利用代数或微积分知识便可给出答案。若缩小范围,只允许在三角形中做选择,那么等边三角形要比其他三角形更优;若只允许在四边形中做选择,那么正方形是最佳的答案。若在所有正多边形中做选择,那么边数越多越接近最优解。而如果没有边数限制,用周长1英里的篱笆围出最大的面积,圆形无疑是最佳选择。

    而在多人博弈中,比如当两个理性头脑为了一个目标而产生冲突的时候,最终的答案总是会同时依赖于两者的决定,所以这时的形势与个人最大化问题的形势便不再相同。两个人一起玩井字棋时,如果甲方先行,且行棋方式完全正确,那么乙方将永远无法击败他;同样,若乙方先行,且行棋方式完全正确,那么甲方也永远无法击败他。这种博弈的方式是随机的,它的解也是随机的。

    如果两个人一起玩向圆桌上放硬币的游戏:双方轮流向桌子上放硬币,率先放不下硬币的人就算失败。在这个博弈中,若A是先行者,他便可以用这样的策略获胜,即首先将一枚硬币放在桌子的正中央,接着每当对方放下一枚硬币,就在与之对称的位置上放上一枚硬币,这样一来,他便永远不会输。所以谁后放谁就会输。这是一个完美的信息博弈,只要知道谁先谁后就能知道谁赢谁输。

    同样,象棋也是一个完美信息博弈,它与上面两种博弈一样简单。若两个计算能力完美的人一起下象棋,那么只会有三种可能:一是先行者必胜,二是后行者必胜,三是平局。初看之下,我们并不知道最终的结局究竟属于哪一个,但只要我们反向推导,就能推算出这一博弈结局与开始信息的关系。象棋的这种简单属性可由博弈论予以证明。

    在大多数人看来,猜硬币与下象棋一样都是简单的博弈。但实际上,猜硬币并非人们想象的那样简单。如果一个人要想与另一个人保持一样,他就会在对方选择正面时跟着选择正面,在对方选择背面时跟着选择背面。但是,如果他一开始就知道对方准备选择正面,好胜心就会驱使他去选择背面,而若对方选择的是背面,他就会毅然选择正面。这就形成了一个无法跳出的循环。

    约翰·冯·诺依曼在处理这个无限循环问题时表现出了自己的天赋。在他看来,不让别人知道你的秘密的前提是,你自己也不知道;在投掷硬币的时候,你只需要以正反面来决定你的行动,这样一来,在这个随意策略中,即使你的对手始终保持着理性,并能提前知晓你的策略,他也不可能以超过半数的概率战胜你。

    约翰·冯·诺依曼给我们呈现的是一个二人零和博弈。他用这个经典的博弈向我们证明了他的理论:参与这个零和博弈的人都试图使自己的利益最大化,于是他们都想尽可能地使对方的利益最小化,因为只有这样才能最大化自己的利益。

    要判断一条铁链的强度,我们首先要知道它最弱的一环,要判断一个木桶能盛多少水,首先要知道它的短板在哪里。在最坏的情况下,最可能获得的收益取决于最脆弱的一点。这个时候,参与者只需采用一种随机策略,就能在最坏的情况下最大化自己的收益。这一意义深远的定理可以在扑克牌游戏中显露其冰山一角:我们在玩扑克牌时常常会见到虚张声势的对手,甚至我们自己有时为了赢得最后的胜利,也会采取虚张声势的策略。我们发现一旦有人虚张声势就意味着他可能有一手差牌,而那些不动声色的人则很可能拿到一手好牌。如果你的对手为了最大化自己的收益采取了随机策略,那么你在面对这样的对手时有一个最优的虚张声势率可以确保使你的利益最大化。这种情况也出现在考试中,一个老师在为学生出考试题时会随机从教科书中抽取内容,这样一来,学生就需要复习整本教科书才能保证自己考到最优的分数。

    除了简单的两人零和博弈外,其他博弈中的理论更加复杂,也更加具有不确定性。比如,赛马、股票交易、国际谈判等多参与者形式的博弈会存在更多的可能性。或许博弈论会给我们的生活带来许多助益,但是是否有人愿意用博弈论来决定自己孩子的未来呢?比如,一场手术可能让你生病的孩子完全治愈,也可能使他出现生命危险。这个时候,你是否还会以博弈论来给出最终的判断呢?对于这样的问题,人们可能会永久地争论下去,因为它直到现在仍没有答案。或许有人会说这是个哲学问题,所以不能用数学来予以解决。但是,在博弈论面前,如果你没有规划和尺度,你甚至无法成为它的观众。

    《博弈论》一书既包含了博弈数学理论的细致说明,又包含了该理论多方面的应用与实践。博弈数学理论于1928年开始发展和出版,它主要应用于博弈本身以及经济学和社会学问题。约翰·冯·诺依曼也希望用数学方法来研究这些问题。

    如果想要应用博弈论,我们至少要在所研究的简单博弈中印证这个理论,随着约翰·冯·诺依曼研究的深入,其中的相互关系表现得愈加明显。不过,对约翰·冯·诺依曼来说,博弈论的最终归宿应该在经济学和社会学上。他从一些简单博弈问题深入浅出地阐述了这个理论,尽管这些问题不如实际问题复杂,但它们都具有根本性和代表性,利用它们可以进一步证明:不管是平行利益问题和相反利益问题、完全信息问题和不完全信息问题,还是自由合理的决定、机会影响问题,等等,都能够用一个精确的方法来加以解决。

    获取正版《博弈论》直达购买
    • 微信号
    • 网站问题、用户注册登录请联系站长,看到第一时间及时回复。
    • weinxin
    • 公众号
    • 慧眼看每日荐书,关键字找书,新功能陆续增加中,敬请关注!
    • weinxin
    huiyan
    • 本文由 发表于 2021-01-1010:19:42
    • 转载请务必保留本文链接:https://www.huiyankan.com/202101101010488.html